
Curassow Documentation
Release 0.5.0

Kyle Fuller

Apr 07, 2017

Contents

1 Quick Start 3

2 Contents 5
2.1 Configuration . 5
2.2 Signal Handling . 6
2.3 Curassow Architecture . 7

i

ii

Curassow Documentation, Release 0.5.0

Curassow is a Swift Nest HTTP Server. It uses the pre-fork worker model and it’s similar to Python’s Gunicorn and
Ruby’s Unicorn.

It exposes a Nest-compatible interface for your application, allowing you to use Curassow with any Nest compatible
web frameworks of your choice.

Contents 1

https://github.com/nestproject/Nest

Curassow Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Quick Start

To use Curassow, you will need to install it via the Swift Package Manager, you can add it to the list of dependencies
in your Package.swift:

import PackageDescription

let package = Package(
name: "HelloWorld",
dependencies: [
.Package(url: "https://github.com/kylef/Curassow.git", majorVersion: 0, minor: 6),

]
)

Afterwards you can place your web application implementation in Sources and add the runner inside main.swift which
exposes a command line tool to run your web application:

import Curassow
import Inquiline

serve { request in
return Response(.ok, contentType: "text/plain", body: "Hello World")

}

Then build and run your application:

$ swift build --configuration release
$./.build/release/HelloWorld

Check out the Hello World example application.

3

https://github.com/kylef/Curassow-example-helloworld

Curassow Documentation, Release 0.5.0

4 Chapter 1. Quick Start

CHAPTER 2

Contents

Configuration

Curassow provides you with an API, and a command line interface for configuration.

Server Socket

bind

The socket to bind to. This may either be in the form HOST:PORT or unix:PATH where any valid IP is acceptable
for HOST.

$ curassow --bind 127.0.0.1:9000
[INFO] Listening at http://127.0.0.1:9000 (940)

$ curassow --bind unix:/tmp/helloworld.sock
[INFO] Listening at unix:/tmp/helloworld.sock (940)

Worker Processes

workers

The number of worker processes for handling requests.

$ curassow --workers 3
[INFO] Listening at http://0.0.0.0:8000 (940)
[INFO] Booting worker process with pid: 941
[INFO] Booting worker process with pid: 942
[INFO] Booting worker process with pid: 943

5

Curassow Documentation, Release 0.5.0

By default, the value of the environment variable WEB_CONCURRENCY will be used. If the environment variable is
not set, 1 will be the default.

worker-type

The type of worker to use. This defaults to sync. Currently the only supported value is sync, there may be an async
and gcd worker in the future.

$ curassow --worker-type sync

timeout

By default, Curassow will kill and restart workers after 30 seconds if it hasn’t responded to the master process.

$ curassow --timeout 30

You can set the timeout to 0 to disable worker timeout handling.

Server

daemon

Daemonize the Curassow process. Detaches the server from the controlling terminal and enters the background.

$ curassow --daemon

Signal Handling

The master and worker processes will respond to the following signals as documented.

Master Process

• QUIT and INT - Quickly shutdown.

• TERM - Gracefully shutdown, this will wait for the workers to finish their current requests and gracefully timeout.

• TTIN - Increases the worker count by one.

• TTOU - Decreases the worker count by one.

Example

TTIN and TTOU signals can be sent to the master to increase or decrease the number of workers.

To increase the worker count by one, where $PID is the PID of the master process.

$ kill -TTIN $PID

To decrease the worker count by one:

6 Chapter 2. Contents

Curassow Documentation, Release 0.5.0

$ kill -TTOU $PID

Worker Process

You may send signals directly to a worker process.

• QUIT and INT - Quickly shutdown.

• TERM - Gracefully shutdown.

Curassow Architecture

This document outlines the architecture and design of the Curassow HTTP server.

Curassow uses the pre-fork worker model, which means that HTTP requests are handled independently inside child
worker processes.

Arbiter

The arbiter is the master process that manages the children worker processes. It has a simple loop that listens for
signals sent to the master process and handles these signals.

Signals

The arbiter will watch for system signals and perform actions when it receives them.

SIGQUIT and SIGINT

The quit and interrupt signals can be used to quickly shutdown Curassow.

SIGTERM

The termination signal can be used to gracefully shutdown Curassow. The arbiter will wait for worker processes to
finish handling their current requests or gracefully timeout.

TTIN

Increment the amount of worker processes by one.

TTOU

Decrement the amount of worker processes by one.

Worker

The worker process is responsible for handling HTTP requests.

2.3. Curassow Architecture 7

	Quick Start
	Contents
	Configuration
	Signal Handling
	Curassow Architecture

